English version is here (Under construction...).
※一部の図はクリックで拡大出来ます.
私の研究の特徴
![]() 図1: 私の研究の特徴 ![]() 図2: 様々なデジタルデータと アナログデータの集積・整備・統融合 |
私の研究の特徴(図1)は,様々な時空間データ(マイクロジオデータ)や統計情報,人の動きや企業間取引に関するビッグデータ,自治体が保有する公共ビッグデータなどを 1:プログラミングとデータベースを駆使したデータの収集・処理・管理 2:様々な統計分析(クラスタリング、機械学習など) 3:GIS(地理情報システム) を用いてデータの分析と,分析結果の可視化を行うことで,都市・地域の分析・評価および計画支援に関する研究に数多く取り組んでいます. これらの研究は何れも都市・地域に関する具体的な課題に対して,様々な統計やデータを空間情報学的アプローチに基づいて分析し,また必要に応じて新しいデータを開発し分析することで実現してきました. 更にこれらの研究を通して蓄積した様々なデータを蓄積・統融合していくことで,実空間を可能な限り緻密に再現出来るデータワールドの実現を目指しています. 秋山研究室の最新動向は研究室ウェブサイトを御覧下さい. |
主な研究テーマ
日本全土の店舗・事業所の時系列変遷の把握(2005年~)
![]() 図3: 下北沢駅周辺における店舗等の 時系列変化地図(2000~2005年) ![]() 図4: 京都市におけるテナントの入替率マップ.四条~祇園にかけての地域で 変化が激しいことが分かる. (2003~2008年 4次メッシュ) 全国版はこちら |
都市における事業所・店舗等の立地分布の変化は,都市の活力や魅力に大きな影響を与えます.とりわけ各種商業テナントが高密度に集積した商店街や繁華街,特定の業種店舗の集積が見られる専門店街等の分布とその盛衰は,都市の活力・魅力を測る一つの指標と言えるでしょう.このような地域の店舗や事業所の現状と分布,そしてその変化の動向を出来るだけ詳細かつ定量的に把握することは,都市空間の持続再生を検討する上で重要な情報となります. そこで本研究では全国的に整備されているデジタル住宅地図とデジタル電話帳を,空間的位置と店舗名称に基づいて結合(時系列化)し,個別店舗の時間的変遷を自動的に抽出することで上記の課題に応える日本全国の詳細な時空間データを構築しています.また上記の手法を実現出来るデータ処理のためのシステム開発も行っています.同データを用いれば個々の店舗・事業所の存続,転換(入替),新規出現,消滅を全国規模で把握出来ます(図3,図4).全国規模でこうした技術開発を行っている例は皆無であり,本研究の新規性は非常に高いものと言えます. 現在は同データを用いた実証的研究を進めるとともに,データの公開も検討しています. |
日本全土の商業集積地域の特定とデータセット開発 (2010年~)(詳細はこちら)
![]() 図5: 経堂農大通り商店街の分布 (水色の領域 2008年) ![]() 図6: 福岡市中心部における商業集積地域の分布(2008年 赤色の地域が大規模な商業地域) ![]() 図7: 鎌倉市における2005年(赤)と2000年(青)の商業集積地域の分布の 比較.商業集積地域の拡大縮小や形状の変化が把握できる. |
これまで商店街・商業地域の現状や変化を把握するためには,商業統計等の統計データの利用が一般的でした.しかしそこから読み取ることが出来る情報は,行政区画やメッシュなどマクロな単位で集計されたものです. 商業地域1つ1つの「位置」と「形状」を観察出来るデータを作ることは出来ないものか?そんなデータを出来るだけ高頻度に更新していくことは出来ないだろうか?そんな要求に応えるべく,我々は繁華街や駅前商店街といった単位の商業変化を毎年読み取ることが出来る「商業集積統計」(図5)を開発しています. デジタル電話帳から得られる実際の店舗立地情報を用いて,店舗・事業所の空間的位置データを整備するとともに,独自のポリゴン生成手法を用いて,商業集積地域ポリゴンデータを全国規模で整備しています.日本全国の商業集積地域の分布を継続的に把握し続けることが可能になりました(図6). 同データを用いることで,例えばある商店街の総店舗数,コンビニエンスストアの数,生鮮三品の充実度等を観察出来ます.さらに本データを複数年に渡って作成することで,商店街の拡大縮小や形状の変化も読み取ることが出来ます(図7). 同データは研究者向けデータの配信だけではなく,行政・地方自治体の都市・地域計画,また出店計画・マーケティングを行う民間企業等に提供出来るよう,商品化も実現しています.同データの詳しい紹介は以下のページを御覧ください. 商業集積統計の紹介 |
商業集積地域の盛衰モデルの検討 (2012年~)
統計データの非集計化によるミクロな人口分布データ「マイクロ人口統計」の開発(2012年~)
国土スケールにおける大規模地震への災害対応力の定量的評価と我が国の防災政策への提案
(震災ビッグデータ)(2013年~)
![]() 図12: 各種のミクロな空間データの組み合わせにより大規模地震災害のリスクと防災対応力評価を実施するイメージ ![]() 図13: 東京23区における時間帯別救助期待人数 (街区集計・建物あたり平均値・2008年) ![]() 図14: 高知市防災対策部における情報共有(2017年) |
住宅地図,住宅土地統計,デジタル電話帳,衛星画像等の高精細な空間データを組み合わせていくことで,建物1棟1棟の耐火構造や築年数を推定し,大規模地震時の倒壊や火災のリスクを定量的に明らかにしています.さらに居住者情報の推定や,各種消防施設等へのアクセス状況から災害への初期対応力も評価し,広域に渡るきめ細やかな災害対応力と被害推計を行う環境=「震災ビッグデータ」を整備しています(図12). 同成果は文部科学省GRENE環境情報分野において他大学においても幅広く活用されています.また2016年度からは文部科学省ポスト京プロジェクト(重点課題3サブ課題B)にも参加し,人流ビッグデータを用いた時間別被害量推定(図13)や,スパースモデリングを活用した最尤の被害シナリオや,いわゆる想定外の被害シナリオの抽出にも取り組み始めています. さらにその結果を我が国の防災政策のあり方に関する議論を行うためのデータとして活用していくことを考えています(図14). ※本研究の成果の一部は地球環境情報統融合プログラム(DIAS)に登録されています.また本研究は平成24年度国土政策関係研究支援事業(2012年:研究助成)の助成を受けて実施しております. ※本研究の成果の一部はNHKスペシャル「震災ビッグデータ Part3」で紹介されています. HP 書籍 |
人流ビッグデータを活用したダイナミックジオデモグラフィックスの開発(2018年~)
企業間取引ビッグデータを活用した地域経済分析と地域のレジリエンス評価手法の検討
(2015年~)
生活基盤施設の存廃に伴う将来の生活困難地域(Facility Desert)の分布推定とコンパクトシティ政策のあり方の検討 (2015年~)
![]() 図20: 2010年における各種生活利便施設の件数と2040年に存続していると推定される生活利便施設の件数 ![]() 図21: 2010年と2040年のFacility Desert人口の割合(市区町村集計) ![]() 図22: 大韓民国全域におけるアクセス可能な生活利便施設の種類の変化(2010年~2040年)(500mメッシュ集計) |
日本では近い将来、地方都市や過疎地域を中心に高齢化と人口減少などに伴い,様々な「生活利便施設(私達の日々の生活を支える様々な公共施設や店舗)」の撤退が予想されます.その結果,生活利便施設へのアクセスが悪く日々の生活が立ち行かなくなる地域=「生活困難地域(Facility desert)」が日本各地で発生することが予想されます。そのため生活利便施設が,今後の人口減少によりどの程度消失する可能性があり,それに伴いどこに居住困難地域が広がっていくのかを明らかにしておくことは,今後日本の都市・地域計画を立てていく上で必要不可欠な情報といえます. そこで本研究では,日本全国の生活利便施設の分布データと,日本全国約3,000万件(約6,000万世帯)の建物単位のミクロな人口分布データ(マイクロ人口統計),また2040 年の将来推計マイクロ人口データを整備しています.またこれらを用いて,将来撤退する可能性がある施設の推定(図20)と,将来のFacility desertの分布推定(図21)を日本全国を対象に試みています. さらにこの課題への対策として,コンパクトシティ化などの政策によりFacility desertにいる人口をどの程度減らすことが出来るかのシミュレーションにも着手しています. なお本研究は韓国国土研究院との共同研究により韓国においても同様の取り組みを展開しており(図22),国際共同研究の成果も公開されています. LINK(英語・韓国語) ※本研究の成果の一部は以下の書籍でも紹介されています. 1. 人口蒸発 「5000万人国家」日本の衝撃―人口問題民間臨調 調査・報告書―, 新潮社, 2015. LINK 2. Japan’s Population Implosion -The 50 Million Shock-, Springer Nature, 2017. LINK |
公共データと民間データを活用した空き家分布推定手法の開発と空き家発生メカニズムの解明(2015年~)
マイクロジオデータ研究会(2011年~)(研究会ウェブサイト)
![]() 図25: 第10回マイクロジオデータ研究会(2016年@東京都港区) ![]() 図26: 第1回国際マイクロジオデータ講習会(2015年@ソウル市) ![]() 図27: 韓国国土研究院でのMGDに関する セミナーの様子(2015年) |
産学官の研究者,データ保有者,データ利用者が集まり,マイクロジオデータの利活用方法・開発・普及に関するアイディアを持ち寄り,共有する場として2011年8月に発足した研究会です. 「マイクロジオデータ」とは時間的,空間的に高精細な様々な地理空間情報(電話帳データ,デジタル地図,携帯電話GPSデータや通話記録データ(CDR),Webデータ,SNSデータなど)の総称です.こうしたデータの取得,普及,研究方法の共有を目的に活動をしています.特に近年では大容量のマイクロジオデータ,いわゆる「ビッグデータ」や,スマートフォン,タブレットを用いた「クラウドソーシング」に関連した内容にも取り組んでいます. これまでにMGDに関する研究会(うち1回は国際シンポジウム)を日本全国で開催してきました(図25).毎回テーマを変えながら,産学官によるMGDに関連する最新の研究と技術に関する情報共有のための講演会とパネルディスカッションを開催してきました.またMGDのユーザーを拡大するためのデータ講習会(国内3回・海外1回(図26))や,可視化支援のためのアプリケーション開発なども行ってきました. さらに2015年度からは国際的なMGD研究に活動を拡張するために,韓国国土研究院(KRIHS)との連携研究に着手しました(図27).加えて東京大学空間情報科学研究センターの共同研究利用システム(JoRAS)や,データ統合・解析システム(DIAS)を活用してMGDを研究者向けに広く配信し,関連する研究分野の発展に貢献しています. 同研究会の活動に関する詳細な情報は,研究会ウェブサイトをご参照下さい.LINK |
超スマート自治体研究協議会(2017年~)
![]() 図28: 超スマート自治体のイメージ ![]() 図29: パーソントリップ調査に基づく 群馬県前橋市中心部における交通分析 ![]() 図30: 群馬県前橋市における市職員向けの研究成果報告会 |
人口減少・高齢化や地域活性化など,我が国の課題の大半は自治体の解決努力にかかっているといえます.そこで本研究ではまず自治体を対象に,産官学が保有す る様々なデータ,特に地域の現状把握につながるミクロな空間情報(マイクロジオデータ)や,ビッグデータ,また市民が持つ個人情報(土地・建物資産や世帯 属性等)を地域データ資源としてダッシュボード上に結集し,自治体による現状把握が可能な環境の実現を目指しています.またそれらを用いて地域課題の発見・解決と,自治体・市民・企業の継続的なスマート化(地域の経営的改善と個性的な地域の実現)につなげるスキームを検討しています.本研究ではこのよう な自治体のことを「超スマート自治体」(Government 5.0)と名付けました(図28). 本研究の実施にあたり,東京大学空間情報科学研究センター,前橋市,株式会社帝国データバンク,株式会社三菱総合研究所の4者間で連携研究協定を締結し,「超スマート自治体研究協議会」を発足しました(プレスリリース 新聞記事(日経新聞)).現在は以上のスキームの実現に必要なプロセスの検討を行うと同時に,具体的な課題把握の取り組みとして, 前橋市の観光客の動向分析や,空き家分布推定,中心市街地の交通分析(図29)などを実施しています.また自治体の職員向けに研究成果の共有を行い(図30),研究成果の社会実装に向けた取り組みも行っています. |
伊能社中 -デジタル地図教材推進団体
![]() |
本プロジェクトではデジタルの地図および画像・動画を教材として活用した「感じる」学習を提案しています.中学・高校における社会科目を対象とし,生徒の想像力を最大限に引き出し,学習意欲を高めることが狙いです.私は同団体の前身団体でソフトウェアやデータ開発の補助などを行っていました.詳細は伊能社中をご覧下さい. |
その他
上記以外にも以下に挙げるテーマに取り組んだり,取り組んでみようとしたりしています.■ DMSP/OLS都市夜間光画像の特性(夜間光の光源推定)に関する研究
- デジタル電話帳を用いた電話の利用履歴情報に基づく空き家分布推定
■ 高分解能の都市気候モデルを用いた都市空間における夜間のヒートアイランドの要因解明
■ 都市空間におけるCO2排出量の高精細な推計とその対策に関する研究
■ 日本全国の都市を対象とした建物単位の太陽光発電ポテンシャル推計
■ マイクロジオデータを用いた日本全国の家賃形成メカニズムの解明
■ モバイルビッグデータを活用した新型コロナウイルスの影響分析
■ ミクロな空間情報を活用した自然災害における損害費用に基づく被害推定
■ 開発途上国における衛星画像を用いた深層学習によるマイクロ人口統計の実現
など・・・
- 私達の研究で開発したデータやソフトウェアを使ってみたい方,共同で研究を取り組んでみたい方,その他問い合わせたいことなどございましたら,ご遠慮無くコンタクト頂ければと思います.よろしくお願い致します.